Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 351
Filter
1.
ACS Appl Mater Interfaces ; 15(23): 27612-27623, 2023 Jun 14.
Article in English | MEDLINE | ID: covidwho-20243632

ABSTRACT

The extensive research into developing novel strategies for detecting respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in clinical specimens, especially the sensitive point-of-care testing method, is still urgently needed to reach rapid screening of viral infections. Herein, a new lateral flow immunoassay (LFIA) platform was reported for the detection of SARS-CoV-2 spike-S1 protein antigens, in which four sensitive and specific SARS-CoV-2 mouse monoclonal antibodies (MmAbs) were tailored by using quantum dot (QD)-loaded dendritic mesoporous silica nanoparticles modified further for achieving the -COOH group surface coating (named Q/S-COOH nanospheres). Importantly, compact QD adsorption was achieved in mesoporous channels of silica nanoparticles on account of highly accessible central-radial pores and electrostatic interactions, leading to significant signal amplification. As such, a limit of detection for SARS-CoV-2 spike-S1 testing was found to be 0.03 ng/mL, which is lower compared with those of AuNPs-LFIA (traditional colloidal gold nanoparticles, Au NPs) and enzyme-linked immunosorbent assay methods. These results show that optimizing the affinity of antibody and the intensity of fluorescent nanospheres simultaneously is of great significance to improve the sensitivity of LFIA.


Subject(s)
COVID-19 , Metal Nanoparticles , Nanospheres , Animals , Mice , SARS-CoV-2 , COVID-19/diagnosis , Gold , Silicon Dioxide , Immunoassay/methods , Antibodies, Viral , Sensitivity and Specificity
2.
Biosensors (Basel) ; 13(5)2023 May 15.
Article in English | MEDLINE | ID: covidwho-20235396

ABSTRACT

Since the global outbreak of coronavirus disease 2019 (COVID-19), it has spread rapidly around the world. The nucleocapsid (N) protein is one of the most abundant SARS-CoV-2 proteins. Therefore, a sensitive and effective detection method for SARS-CoV-2 N protein is the focus of research. Here, we developed a surface plasmon resonance (SPR) biosensor based on the dual signal-amplification strategy of Au@Ag@Au nanoparticles (NPs) and graphene oxide (GO). Additionally, a sandwich immunoassay was utilized to sensitively and efficiently detect SARS-CoV-2 N protein. On the one hand, Au@Ag@Au NPs have a high refractive index and the capability to electromagnetically couple with the plasma waves propagating on the surface of gold film, which are harnessed for amplifying the SPR response signal. On the other hand, GO, which has the large specific surface area and the abundant oxygen-containing functional groups, could provide unique light absorption bands that can enhance plasmonic coupling to further amplify the SPR response signal. The proposed biosensor could efficiently detect SARS-CoV-2 N protein for 15 min and the detection limit for SARS-CoV-2 N protein was 0.083 ng/mL, with a linear range of 0.1 ng/mL~1000 ng/mL. This novel method can meet the analytical requirements of artificial saliva simulated samples, and the developed biosensor had a good anti-interference capability.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , SARS-CoV-2 , Gold , Immunoassay/methods , COVID-19/diagnosis
3.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: covidwho-20237927

ABSTRACT

Rapid, accurate, and convenient diagnosis is essential for effective disease management. Various detection methods, such as enzyme-linked immunosorbent assay, have been extensively used, with lateral flow immunoassay (LFIA) recently emerging as a major diagnostic tool. Nanoparticles (NPs) with characteristic optical properties are used as probes for LFIA, and researchers have presented various types of optical NPs with modified optical properties. Herein, we review the literature on LFIA with optical NPs for the detection of specific targets in the context of diagnostics.


Subject(s)
Metal Nanoparticles , Nanoparticles , Immunoassay/methods , Enzyme-Linked Immunosorbent Assay , Gold , Limit of Detection
4.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: covidwho-20237163

ABSTRACT

Since the outbreak of the pandemic respiratory virus SARS-CoV-2 (COVID-19), academic communities and governments/private companies have used several detection techniques based on gold nanoparticles (AuNPs). In this emergency context, colloidal AuNPs are highly valuable easy-to-synthesize biocompatible materials that can be used for different functionalization strategies and rapid viral immunodiagnosis. In this review, the latest multidisciplinary developments in the bioconjugation of AuNPs for the detection of SARS-CoV-2 virus and its proteins in (spiked) real samples are discussed for the first time, with reference to the optimal parameters provided by three approaches: one theoretical, via computational prediction, and two experimental, using dry and wet chemistry based on single/multistep protocols. Overall, to achieve high specificity and low detection limits for the target viral biomolecules, optimal running buffers for bioreagent dilutions and nanostructure washes should be validated before conducting optical, electrochemical, and acoustic biosensing investigations. Indeed, there is plenty of room for improvement in using gold nanomaterials as stable platforms for ultrasensitive and simultaneous "in vitro" detection by the untrained public of the whole SARS-CoV-2 virus, its proteins, and specific developed IgA/IgM/IgG antibodies (Ab) in bodily fluids. Hence, the lateral flow assay (LFA) approach is a quick and judicious solution to combating the pandemic. In this context, the author classifies LFAs according to four generations to guide readers in the future development of multifunctional biosensing platforms. Undoubtedly, the LFA kit market will continue to improve, adapting researchers' multidetection platforms for smartphones with easy-to-analyze results, and establishing user-friendly tools for more effective preventive and medical treatments.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , SARS-CoV-2 , COVID-19/diagnosis , Gold , Antibodies, Viral , Immunoglobulin A , Sensitivity and Specificity , Computer Simulation , Immunoassay/methods , COVID-19 Testing
5.
Int J Biol Macromol ; 242(Pt 4): 125186, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-20231053

ABSTRACT

Lateral flow immunoassay (LFIA) is widely used as a rapid point-of-care testing (POCT) technique in food safety, veterinary and clinical detection on account of the accessible, fast and low-cost characteristics. After the outbreak of the coronavirus disease 2019 (COVID-19), different types of LFIAs have attracted considerable interest because of their ability of providing immediate diagnosis directly to users, thereby effectively controlling the outbreak. Based on the introduction of the principles and key components of LFIAs, this review focuses on the major detection formats of LFIAs for antigens, antibodies and haptens. With the rapid innovation of detection technologies, new trends of novel labels, multiplex and digital assays are increasingly integrated with LFIAs. Therefore, this review will also introduce the development of new trends of LFIAs as well as its future perspectives.


Subject(s)
COVID-19 , Haptens , Humans , COVID-19/diagnosis , Antibodies , Antigens , Immunoassay/methods
6.
J Chromatogr A ; 1704: 464109, 2023 Aug 16.
Article in English | MEDLINE | ID: covidwho-20230627

ABSTRACT

The shift from testing at centralized diagnostic laboratories to remote locations is being driven by the development of point-of-care (POC) instruments and represents a transformative moment in medicine. POC instruments address the need for rapid results that can inform faster therapeutic decisions and interventions. These instruments are especially valuable in the field, such as in an ambulance, or in remote and rural locations. The development of telehealth, enabled by advancements in digital technologies like smartphones and cloud computing, is also aiding in this evolution, allowing medical professionals to provide care remotely, potentially reducing healthcare costs and improving patient longevity. One notable POC device is the lateral flow immunoassay (LFIA), which played a major role in addressing the COVID-19 pandemic due to its ease of use, rapid analysis time, and low cost. However, LFIA tests exhibit relatively low analytical sensitivity and provide semi-quantitative information, indicating either a positive, negative, or inconclusive result, which can be attributed to its one-dimensional format. Immunoaffinity capillary electrophoresis (IACE), on the other hand, offers a two-dimensional format that includes an affinity-capture step of one or more matrix constituents followed by release and electrophoretic separation. The method provides greater analytical sensitivity, and quantitative information, thereby reducing the rate of false positives, false negatives, and inconclusive results. Combining LFIA and IACE technologies can thus provide an effective and economical solution for screening, confirming results, and monitoring patient progress, representing a key strategy in advancing diagnostics in healthcare.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/diagnosis , Laboratories , Smartphone , Immunoassay/methods , COVID-19 Testing
7.
Anal Chim Acta ; 1265: 341326, 2023 Jul 18.
Article in English | MEDLINE | ID: covidwho-2311677

ABSTRACT

Herein, we have proposed a straightforward and label-free electrochemical immunosensing strategy supported on a glassy carbon electrode (GCE) modified with a biocompatible and conducting biopolymer functionalized molybdenum disulfide-reduced graphene oxide (CS-MoS2/rGO) nanohybrid to investigate the SARS-CoV-2 virus. CS-MoS2/rGO nanohybrid-based immunosensor employs recombinant SARS-CoV-2 Spike RBD protein (rSP) that specifically identifies antibodies against the SARS-CoV-2 virus via differential pulse voltammetry (DPV). The antigen-antibody interaction diminishes the current responses of the immunosensor. The obtained results indicate that the fabricated immunosensor is extraordinarily capable of highly sensitive and specific detection of the corresponding SARS-CoV-2 antibodies with a LOD of 2.38 zg mL-1 in phosphate buffer saline (PBS) samples over a broad linear range between 10 zg mL-1-100 ng mL-1. In addition, the proposed immunosensor can detect attomolar concentrations in spiked human serum samples. The performance of this immunosensor is assessed using actual serum samples from COVID-19-infected patients. The proposed immunosensor can accurately and substantially differentiate between (+) positive and (-) negative samples. As a result, the nanohybrid can provide insight into the conception of Point-of-Care Testing (POCT) platforms for cutting-edge infectious disease diagnostic methods.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Humans , Molybdenum , Biosensing Techniques/methods , COVID-19/diagnosis , Immunoassay/methods , SARS-CoV-2 , Electrochemical Techniques/methods
8.
Talanta ; 260: 124614, 2023 Aug 01.
Article in English | MEDLINE | ID: covidwho-2311488

ABSTRACT

A novel immunosensor based on electrochemiluminescence resonance energy transfer (ECL-RET) for the sensitive determination of N protein of the SARS-CoV-2 coronavirus is described. For this purpose, bifunctional core@shell nanoparticles composed of a Pt-coated Au core and finally decorated with small Au inlays (Au@Pt/Au NPs) have been synthesized to act as ECL acceptor, using [Ru (bpy)3]2+ as ECL donor. These nanoparticles are efficient signaling probes in the immunosensor developed. The proposed ECL-RET immunosensor has a wide linear response to the concentration of N protein of the SARS-CoV-2 coronavirus with a detection limit of 1.27 pg/mL. Moreover, it has a high stability and shows no response to other proteins related to different virus. The immunosensor has achieved the quantification of N protein of the SARS-CoV-2 coronavirus in saliva samples. Results are consistent with those provided by a commercial colorimetric ELISA kit. Therefore, the developed immunosensor provides a feasible and reliable tool for early and effective detection of the virus to protect the population.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Gold , SARS-CoV-2 , Luminescent Measurements/methods , Biosensing Techniques/methods , Immunoassay/methods , COVID-19/diagnosis , Electrochemical Techniques/methods , Limit of Detection
9.
Anal Biochem ; 662: 115013, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2298807

ABSTRACT

This study developed a novel, ultrasensitive sandwich-type electrochemical immunosensor for detecting the porcine epidemic diarrhea virus (PEDV). By electrochemical co-deposition of graphene and Prussian blue, a Prussian blue-reduced graphene oxide-modified glassy carbon electrode was made, further modified with PEDV-monoclonal antibodies (mAbs) to create a new PEDV immunosensor using the double antibody sandwich technique. The electrochemical characteristics of several modified electrodes were investigated using cyclic voltammetry (CV). We optimized the pH levels and scan rate. Additionally, we examined specificity, reproducibility, repeatability, accuracy, and stability. The study indicates that the immunosensor has good performance in the concentration range of 1 × 101.88 to 1 × 105.38 TCID50/mL of PEDV, with a detection limit of 1 × 101.93 TCID50/mL at a signal-to-noise ratio of 3σ. The composite membranes produced via co-deposition of graphene and Prussian blue effectively increased electron transport to the glassy carbon electrode, boosted response signals, and increased the sensitivity, specificity, and stability of the immunosensor. The immunosensor could accurately detect PEDV, with results comparable to real-time quantitative PCR. This technique was applied to PEDV detection and served as a model for developing additional immunosensors for detecting hazardous chemicals and pathogenic microbes.


Subject(s)
Biosensing Techniques , Graphite , Porcine epidemic diarrhea virus , Animals , Swine , Carbon , Biosensing Techniques/methods , Electrochemical Techniques/methods , Reproducibility of Results , Immunoassay/methods , Electrodes , Limit of Detection , Gold
10.
Biosensors (Basel) ; 13(4)2023 Apr 19.
Article in English | MEDLINE | ID: covidwho-2297825

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing coronavirus disease (COVID-19) outbreak and a rising demand for the development of accurate, timely, and cost-effective diagnostic tests for SARS-CoV-2 as well as other viral infections in general. Currently, traditional virus screening methods such as plate culturing and real-time PCR are considered the gold standard with accurate and sensitive results. However, these methods still require sophisticated equipment, trained personnel, and a long analysis time. Alternatively, with the integration of microfluidic and biosensor technologies, microfluidic-based biosensors offer the ability to perform sample preparation and simultaneous detection of many analyses in one platform. High sensitivity, accuracy, portability, low cost, high throughput, and real-time detection can be achieved using a single platform. This review presents recent advances in microfluidic-based biosensors from many works to demonstrate the advantages of merging the two technologies for sensing viruses. Different platforms for virus detection are classified into two main sections: immunoassays and molecular assays. Moreover, available commercial sensing tests are analyzed.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Biosensing Techniques/methods , Immunoassay/methods
11.
Viruses ; 15(4)2023 04 07.
Article in English | MEDLINE | ID: covidwho-2294117

ABSTRACT

The aim of this study was to validate the detection of anti-nucleocapsid protein (N protein) antibodies for the diagnosis of SARS-CoV-2 infection in light of the fact that most COVID-19 vaccines use the spike (S) protein as the antigen. Here, 3550 healthcare workers (HCWs) were enrolled from May 2020 (when no S protein vaccines were available). We defined SARS-CoV-2 infection if HCWs were found to be positive by RT-PCR or found to be positive in at least two different serological immunoassays. Serum samples from Biobanc I3PT-CERCA were analyzed by Roche Elecsys® (N protein) and Vircell IgG (N and S proteins) immunoassays. Discordant samples were reanalyzed with other commercial immunoassays. Roche Elecsys® showed the positivity of 539 (15.2%) HCWs, 664 (18.7%) were found to be positive by Vircell IgG immunoassays, and 164 samples (4.6%) showed discrepant results. According to our SARS-CoV-2 infection criteria, 563 HCWs had SARS-CoV-2 infection. The Roche Elecsys® immunoassay has a sensitivity, specificity, accuracy, and concordance with the presence of infection of 94.7%, 99.8%, 99.3%, and 0.96, respectively. Similar results were observed in a validation cohort of vaccinated HCWs. We conclude that the Roche Elecsys® SARS-CoV-2 N protein immunoassay demonstrated good performance in diagnosing previous SARS-CoV-2 infection in a large cohort of HCWs.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19 Vaccines , Antibodies, Viral , Sensitivity and Specificity , Immunoassay/methods , Nucleocapsid Proteins , Immunoglobulin G , Vaccination
12.
Bioelectrochemistry ; 152: 108438, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2294078

ABSTRACT

Antigen test kits (ATK) are extensively utilized for screening and diagnosing COVID-19 because they are easy to operate. However, ATKs exhibit poor sensitivity and cannot detect low concentrations of SARS-CoV-2. Herein, we present a new, highly sensitive, and selective device obtained by combining the principle of ATKs with electrochemical detection for COVID-19 diagnosis, which can be quantitatively assessed using a smartphone. An electrochemical test strip (E-test strip) was constructed by attaching a screen-printed electrode inside a lateral-flow device to exploit the remarkable binding affinity of SARS-CoV-2 antigen to ACE2. The ferrocene carboxylic acid attached to SARS-CoV-2 antibody acts as an electroactive species when it binds to SARS-CoV-2 antigen in the sample before it flows continuously to the ACE2-immobilization region on the electrode. Electrochemical-assay signal intensity on smartphones increased proportionally to the concentration of SARS-CoV-2 antigen (LOD = 2.98 pg/mL, under 12 min). Additionally, the application of the single-step E-test strip for COVID-19 screening was demonstrated using nasopharyngeal samples, and the results were consistent with those obtained using the gold standard (RT-PCR). Therefore, the sensor demonstrated excellent performance in assessing and screening COVID-19, and it can be used professionally to accurately verify diagnostic data while remaining rapid, simple, and inexpensive.


Subject(s)
COVID-19 Testing , COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Sensitivity and Specificity , Immunoassay/methods
13.
Anal Methods ; 15(18): 2154-2180, 2023 05 11.
Article in English | MEDLINE | ID: covidwho-2296617

ABSTRACT

The Covid-19 pandemic has led to greater recognition of the importance of the fast and timely detection of pathogens. Recent advances in point-of-care testing (POCT) technology have shown promising results for rapid diagnosis. Immunoassays are among the most extensive POCT assays, in which specific labels are used to indicate and amplify the immune signal. Nanoparticles (NPs) are above the rest because of their versatile properties. Much work has been devoted to NPs to find more efficient immunoassays. Herein, we comprehensively describe NP-based immunoassays with a focus on particle species and their specific applications. This review describes immunoassays along with key concepts surrounding their preparation and bioconjugation to show their defining role in immunosensors. The specific mechanisms, microfluidic immunoassays, electrochemical immunoassays (ELCAs), immunochromatographic assays (ICAs), enzyme-linked immunosorbent assays (ELISA), and microarrays are covered herein. For each mechanism, a working explanation of the appropriate background theory and formalism is articulated before examining the biosensing and related point-of-care (POC) utility. Given their maturity, some specific applications using different nanomaterials are discussed in more detail. Finally, we outline future challenges and perspectives to give a brief guideline for the development of appropriate platforms.


Subject(s)
Biosensing Techniques , COVID-19 , Nanoparticles , Humans , Immunoassay/methods , Pandemics , COVID-19/diagnosis , Nanoparticles/chemistry , Point-of-Care Testing
14.
Anal Bioanal Chem ; 413(9): 2311-2330, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-2251875

ABSTRACT

The current global fight against coronavirus disease (COVID-19) to flatten the transmission curve is put forth by the World Health Organization (WHO) as there is no immediate diagnosis or cure for COVID-19 so far. In order to stop the spread, researchers worldwide are working around the clock aiming to develop reliable tools for early diagnosis of severe acute respiratory syndrome (SARS-CoV-2) understanding the infection path and mechanisms. Currently, nucleic acid-based molecular diagnosis (real-time reverse transcription polymerase chain reaction (RT-PCR) test) is considered the gold standard for early diagnosis of SARS-CoV-2. Antibody-based serology detection is ineffective for the purpose of early diagnosis, but a potential tool for serosurveys, providing people with immune certificates for clearance from COVID-19 infection. Meanwhile, there are various blooming methods developed these days. In this review, we summarise different types of coronavirus discovered which can be transmitted between human beings. Methods used for diagnosis of the discovered human coronavirus (SARS, MERS, COVID-19) including nucleic acid detection, gene sequencing, antibody detection, antigen detection, and clinical diagnosis are presented. Their merits, demerits and prospects are discussed which can help the researchers to develop new generation of advanced diagnostic tools for accurate and effective control of human coronavirus transmission in the communities and hospitals.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus/isolation & purification , Animals , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19 Testing/methods , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoassay/methods , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Molecular Diagnostic Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Severe acute respiratory syndrome-related coronavirus/isolation & purification , SARS-CoV-2/isolation & purification , Serologic Tests/methods , Severe Acute Respiratory Syndrome/diagnosis
15.
Anal Chim Acta ; 1255: 341102, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2288795

ABSTRACT

Although many approaches have been developed for the quick assessment of SARS-CoV-2 infection, few of them are devoted to the detection of the neutralizing antibody, which is essential for assessing the effectiveness of vaccines. Herein, we developed a tri-mode lateral flow immunoassay (LFIA) platform based on gold-silver alloy hollow nanoshells (Au-Ag HNSs) for the sensitive and accurate quantification of neutralizing antibodies. By tuning the shell-to-core ratio, the surface plasmon resonance (SPR) absorption band of the Au-Ag HNSs is located within the near infrared (NIR) region, endowing them with an excellent photothermal effect under the irradiation of optical maser at 808 nm. Further, the Raman reporter molecule 4-mercaptobenzoic acid (MBA) was immobilized on the gold-silver alloy nanoshell to obtain an enhanced SERS signal. Thus, these Au-Ag HNSs could provide colorimetric, photothermal and SERS signals, with which, tri-mode strips for SARS-CoV-2 neutralizing antibody detection were constructed by competitive immunoassay. Since these three kinds of signals could complement one another, a more accurate detection was achieved. The tri-mode LFIA achieved a quantitative detection with detection limit of 20 ng/mL. Moreover, it also successfully detected the serum samples from 98 vaccinated volunteers with 79 positive results, exhibiting great application value in neutralizing antibody detection.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Immunoassay , Nanoshells , SARS-CoV-2 , Spectrum Analysis, Raman , Humans , Alloys , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/immunology , Colorimetry/methods , COVID-19/diagnosis , COVID-19/immunology , Gold , Immunoassay/instrumentation , Immunoassay/methods , Metal Nanoparticles , SARS-CoV-2/immunology , Silver , Spectrum Analysis, Raman/methods
16.
ACS Appl Mater Interfaces ; 15(9): 12327-12338, 2023 Mar 08.
Article in English | MEDLINE | ID: covidwho-2287610

ABSTRACT

Timely, accurate, and rapid diagnosis of SARS-CoV-2 is a key factor in controlling the spread of the epidemic and guiding treatments. Herein, a flexible and ultrasensitive immunochromatographic assay (ICA) was proposed based on a colorimetric/fluorescent dual-signal enhancement strategy. We first fabricated a highly stable dual-signal nanocomposite (SADQD) by continuously coating one layer of 20 nm AuNPs and two layers of quantum dots onto a 200 nm SiO2 nanosphere to provide strong colorimetric signals and enhanced fluorescence signals. Two kinds of SADQD with red and green fluorescence were conjugated with spike (S) antibody and nucleocapsid (N) antibody, respectively, and used as dual-fluorescence/colorimetric tags for the simultaneous detection of S and N proteins on one test line of ICA strip, which can not only greatly reduce the background interference and improve the detection accuracy but also achieve a higher colorimetric sensitivity. The detection limits of the method for target antigens via colorimetric and fluorescence modes were as low as 50 and 2.2 pg/mL, respectively, which were 5 and 113 times more sensitive than those from the standard AuNP-ICA strips, respectively. This biosensor will provide a more accurate and convenient way to diagnose COVID-19 in different application scenarios.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , SARS-CoV-2 , COVID-19/diagnosis , Colorimetry/methods , Gold/chemistry , Silicon Dioxide , Metal Nanoparticles/chemistry , Coloring Agents , Antibodies , Immunoassay/methods
17.
Sci Rep ; 13(1): 5342, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2262366

ABSTRACT

C-X-C motif chemokine ligand 9 (CXCL9), a candidate biomarker, reflects type 1 (T1) inflammation pathology. Here, we report the analytical performance and clinical characteristics of a new CXCL9 reagent for a fully automated immunoassay device. We evaluated the limits of blank, detection, and quantitation (LoQ) along with other efficacy parameters, and the ability of the assay to report patient health, COVID-19 status, and the presence of asthma and/or interstitial lung diseases (ILDs). The coefficient of variation for 5-day total precision using two instruments was 7% across two controls, serum, and plasma panels. LoQ of 2.2 pg/mL suggested the efficacy of the assay in detecting T1 inflammation in plasma or serum; no cross-reactivity or interference was observed. We identified high serum CXCL9 levels in samples from patients with acute COVID-19 infections (n = 57), chronic bird-related hypersensitivity pneumonitis (n = 61), asthma (n = 194), and ILDs (n = 84) compared to healthy individuals (< 39.0 pg/mL). Furthermore, CXCL9 levels increased with age in asthma patients, and an opposite trend was observed for T2 inflammatory factors. These results suggest the utility of the automated CXCL9 immunoassay for measuring CXCL9 in clinical samples and reflect its role in T1 inflammation.


Subject(s)
Asthma , COVID-19 , Lung Diseases, Interstitial , Humans , COVID-19/diagnosis , Immunoassay/methods , Biomarkers , Asthma/diagnosis , Inflammation , Chemokine CXCL9 , Chemokine CXCL10
18.
J Biophotonics ; 16(7): e202300004, 2023 07.
Article in English | MEDLINE | ID: covidwho-2267810

ABSTRACT

The fast spread and transmission of the coronavirus 2019 (COVID-19) has become one of serious global public health problems. Herein, a surface enhanced Raman spectroscopy-based lateral flow immunoassay (LFA) was developed for the detection of SARS-CoV-2 antigen. Using uniquely designed core-shell nanoparticle with embedded Raman probe molecules as the indicator to reveal the concentration of target protein, excellent quantitative performance with a limit of detection (LOD) of 0.03 ng/mL and detection range of 10-1000 ng/mL can be achieved within 15 min. Besides, the detection of spiked virus protein in human saliva was also performed with a portable Raman spectrometer, proposing the feasibility of the method in practical applications. This easy-to-use, rapid and accurate method would provide a point-of-care testing way as the ideal alternative for current detection requirement of virus-related biomarkers.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , SARS-CoV-2 , COVID-19/diagnosis , Spectrum Analysis, Raman/methods , Biosensing Techniques/methods , Immunoassay/methods , Gold
19.
Methods Mol Biol ; 2612: 109-127, 2023.
Article in English | MEDLINE | ID: covidwho-2258263

ABSTRACT

Gyrolab® is an open immunoassay platform that automates the complete immunoassay protocol in a microfluidic disc. The column profiles generated with Gyrolab immunoassays are used to gain more information about biomolecular interactions that can be useful in assay development or quantify analytes in samples. Gyrolab immunoassays can be used to cover a broad concentration range and diversity of matrices in applications ranging from biomarker monitoring, pharmacodynamics and pharmacokinetics studies, to bioprocess development in many areas, including therapeutic antibodies, vaccines, and cell and gene therapy.This chapter is an overview of Gyrolab technology, including system components and the assay development workflow, including the process of selecting affinity reagents, Gyrolab Bioaffy CDs, and assay conditions to optimize immunoassays. Two case studies are included. The first involves an assay for the humanized antibody pembrolizumab used in cancer immunotherapy that can generate data for pharmacokinetics studies. The second case study involves quantification of the biomarker and biotherapeutic interleukin-2 (IL-2) in human serum and buffer. IL-2 has been implicated in the cytokine storm associated with COVID-19, and cytokine release syndrome (CRS), which can occur during chimeric antigen receptor T cell (CART) therapy used in treating cancer. These molecules also have therapeutic relevance in combination.


Subject(s)
COVID-19 , Interleukin-2 , Humans , Workflow , Immunoassay/methods , Automation , Miniaturization , Biomarkers
20.
Biosensors (Basel) ; 13(2)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2283586

ABSTRACT

Myeloperoxidase (MPO) has been demonstrated to be a biomarker of neutrophilic inflammation in various diseases. Rapid detection and quantitative analysis of MPO are of great significance for human health. Herein, an MPO protein flexible amperometric immunosensor based on a colloidal quantum dot (CQD)-modified electrode was demonstrated. The remarkable surface activity of CQDs allows them to bind directly and stably to the surface of proteins and to convert antigen-antibody specific binding reactions into significant currents. The flexible amperometric immunosensor provides quantitative analysis of MPO protein with an ultra-low limit of detection (LOD) (31.6 fg mL-1), as well as good reproducibility and stability. The detection method is expected to be applied in clinical examination, POCT (bedside test), community physical examination, home self-examination and other practical scenarios.


Subject(s)
Biosensing Techniques , Quantum Dots , Humans , Peroxidase , Biosensing Techniques/methods , Reproducibility of Results , Immunoassay/methods , Proteins , Limit of Detection , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL